PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases.

نویسندگان

  • J Cline
  • J C Braman
  • H H Hogrefe
چکیده

The replication fidelities of Pfu, Taq, Vent, Deep Vent and UlTma DNA polymerases were compared using a PCR-based forward mutation assay. Average error rates (mutation frequency/bp/duplication) increased as follows: Pfu (1.3 x 10(-6)) < Deep Vent (2.7 x 10(-6)) < Vent (2.8 x 10(-6)) < Taq (8.0 x 10(-6)) < < exo- Pfu and UlTma (approximately 5 x 10(-5)). Buffer optimization experiments indicated that Pfu fidelity was highest in the presence of 2-3 mM MgSO4 and 100-300 microM each dNTP and at pH 8.5-9.1. Under these conditions, the error rate of exo- Pfu was approximately 40-fold higher (5 x 10(-5)) than the error rate of Pfu. As the reaction pH was raised from pH 8 to 9, the error rate of Pfu decreased approximately 2-fold, while the error rate of exo- Pfu increased approximately 9-fold. An increase in error rate with pH has also been noted for the exonuclease-deficient DNA polymerases Taq and exo- Klenow, suggesting that the parameters which influence replication error rates may be similar in pol l- and alpha-like polymerases. Finally, the fidelity of 'long PCR' DNA polymerase mixtures was examined. The error rates of a Taq/Pfu DNA polymerase mixture and a Klentaq/Pfu DNA polymerase mixture were found to be less than the error rate of Taq DNA polymerase, but approximately 3-4-fold higher than the error rate of Pfu DNA polymerase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PCR performance of the highly thermostable proof-reading B-type DNA polymerase from Pyrococcus abyssi.

DNA polymerase from the archaeon Pyrococcus abyssi strain Orsay was expressed in Escherichia coli. The recombinant DNA polymerase (Pab) was purified to homogeneity by heat treatment followed by 5 steps of chromatography and characterized for PCR applications. Buffer optimization experiments indicated that Pab PCR performance and fidelity parameters were highest in the presence of 20 mM Tris-HCl...

متن کامل

A hot start alternative for high-fidelity DNA polymerase amplification mediated by quantum dots.

Quantum dots (QDs) are of great interest due to their unique chemical and physical properties. Recently, a hot start (HS) polymerase chain reaction (PCR) amplification performance based on QDs with a high-fidelity Pfu DNA polymerase has been reported. However, whether QDs can trigger HS effects with other high-fidelity or conventional DNA polymerases is yet to be understood. In the present stud...

متن کامل

Archaeal dUTPase enhances PCR amplifications with archaeal DNA polymerases by preventing dUTP incorporation.

We discovered a thermostable enzyme from the archaeon Pyrococcus furiosus (Pfu), which increases yields of PCR product amplified with Pfu DNA polymerase. A high molecular mass (>250 kDa) complex with PCR-enhancing activity was purified from Pfu extracts. The complex is a multimer of two discrete proteins, P45 and P50, with significant similarity to bacterial dCTP deaminase/dUTPase and DNA flavo...

متن کامل

DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction

The polymerase chain reaction (PCR) is widely applied across the biosciences, with archaeal Family-B DNA polymerases being preferred, due to their high thermostability and fidelity. The enzyme from Pyrococcus furiosus (Pfu-Pol) is more frequently used than the similar protein from Thermococcus kodakarensis (Tkod-Pol), despite the latter having better PCR performance. Here the two polymerases ha...

متن کامل

Low-fidelity Pyrococcus furiosus DNA polymerase mutants useful in error-prone PCR.

Random mutagenesis constitutes an important approach for identifying critical regions of proteins, studying structure-function relations and developing novel proteins with desired properties. Perhaps, the most popular method is the error-prone PCR, in which mistakes are introduced into a gene, and hence a protein, during DNA polymerase-catalysed amplification cycles. Unfortunately, the relative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 24 18  شماره 

صفحات  -

تاریخ انتشار 1996